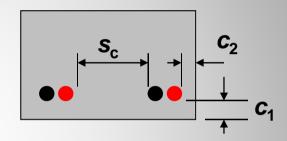


Overview


- Design to AS 3600–2001
- SRIA Industry Survey of Engineering Drawings
- Design to AS 3600–2009:
 Tensile Development Lengths
- Design to AS 3600–2009:
 Tensile Lap Lengths
- SRIA Design Tables to AS 3600–2009

Design to AS 3600-2001: L_{sy.t}

Tensile Development or Lap Length:

$$L_{\text{sy.t}} = \frac{k_1 k_2 f_{\text{sy}} A_{\text{b}}}{(2a + d_{\text{b}}) \sqrt{f_{\text{c}}'}} \ge 25 k_1 d_{\text{b}}$$

2a = min. (2 x min. cover, clear distance s_c)

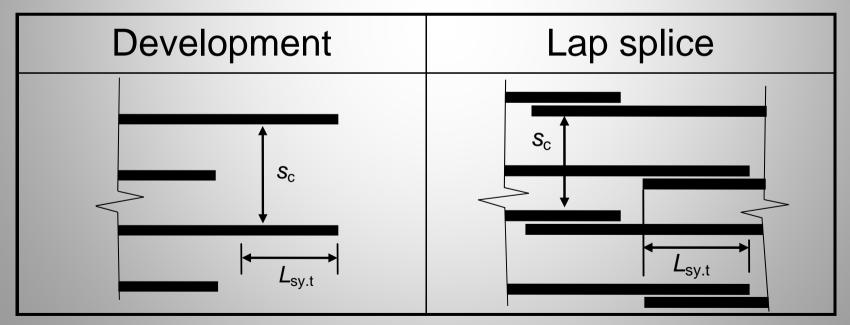
- First included in AS 3600 1988
- Applicable for min. nominal 400 MPa deformed bars
- Formula can be used to calculate tensile development length or lap length (s_c modified)
- k_1 accounts for depth of concrete below bars
- k_2 accounts for wide bar spacing & any transverse bars
- f_c ≤ 65 MPa

Design to AS 3600–2001: $L_{\text{sy.t}}$

Recommended improvements:

Increase minimum value of L_{sy.t} for D500N reinforcing bars:

$$L_{\text{sy.t}} = \frac{k_1 k_2 f_{\text{sy}} A_{\text{b}}}{(2a + d_{\text{b}}) \sqrt{f_{\text{c}}'}} \ge 29 k_1 d_{\text{b}}$$


■ Place limits on 2a: $2d_b \le 2a \le 6d_b$ in particular the lower limit, so as to avoid excessively large $L_{sv.t}$ values

Design to AS 3600-2001: L_{sy.t}

Definition of clear distance, s_c , between bars developing stress:

Figures unfortunately absent from Standard or Commentary:

Design to AS 3600-2001: L_{sy.t}

Table A.19

Development Lengths(1), Lest (mm) for Grade D500N Bars in Beams and Columns with Fitments

For bars in columns with properly-designed fitments and bottom bars in beams with properly-designed fitments

 $k_1 = 1.00$ $k_2 = 2.2$

S₀ = clear distance between adjacent bars. (or buildies of bars) developing stress

c - minimum cover to har under consideration

r _c	a ⁽²⁾	Bar si	20						fo-	a(2)	Bar si	20					
(MPa)	(mm)	N12	N16	N20	N24	N28	N32	N36	(MPa)	(mm)	N12	N16	N20	N24	N28	N32	N36
20	20	530	880	1290					40	20	380	620	910				
	25	450	750	1100	1500					25	320	530	780	1060			
	30	390	650	970	1320	1720		+		30	300	460	680	940	1220		
	35	340	580	860	1180	1550	1940			35	300	410	610	840	1090	1370	
	40	300	520	770	1070	1400	1770	2160		40	300	400	550	760	990	1250	1530
	45	300	470	700	980	1280	1620			45	300	400	500	690	910	1150	1410
	50	300	430	640	900	1180	1500	1840		50	300	400	500	630	840	1060	1300
	55	300	400	590	830	1100	1390	1710		55	300	400	500	600	780	990	1210
	60	300	400	550	770	1020	1300	1600		60	300	400	500	600	720	920	1130
	65	300	400	520	720	960	1220	1510		65	300	400	500	600	700	860	1070
70 75	70	300	400	500	680	900	1150	1420		70	300	400	500	600	700	810	1010
	75	300	400	500	640	850	1090	1350		75	300	400	500	600	700	800	950
25	20	480	790	1150	- 4	-	-		50	20	340	560	810			_	
	25	400	670	990	1340					25	300	470	700	950	,		
	30	350	580	860	1180	1540				30	300	410	610	840	1090		
	35	300	510	770	1060	1380	1730			35	300	400	540	750	980	1230	
	40	300	460	690	960	1250	1580	1930		40	300	400	500	680	890	1120	1370
	45	300	420	630	870	1150	1450	1780		45	300	400	500	620	810	1030	1260
	50	300	400	580	800	1060	1340	1650		50	300	400	500	600	750	950	1160
	55	300	400	530	740	980	1250	1530		55	300	400	500	600	700	-880	1080
	60	300	400	500	690	920	1160	1440		60	300	400	500	600	700	820	1020
	65	300	400	500	650	860	1090	1350		65	300	400	500	600	700	800	950
	70	300	400	500	610	810	1030	1270		70	300	400	500	600	700	800	900
	75	300	400	500	600	760	970	1200		75	300	400	500	600	700	800	900
32	20	420	700	1020		103		-	65	20	300	490	710	- 4	. 0		-
	25	350	590	870	1190					25	300	420	610	830			
	30	310	510	760	1050	1360				30	300	400	540	730	950		
	35	300	450	680	940	1220	1530			35	300	400	500	660	860	1080	
	40	300	410	610	850	1110	1400	1710		40	300	400	500	600	780	980	1200
	45	300	400	560	770	1010	1280	1570		45	300	400	500	600	710	900	1100
	50		400	510	710	940	1180	1460		50	300	400	500	600	700	830	1020
	55	300	400	500	660	870	1100	1360		55	300	400	500	600	700	800	950
	60		400	500	610	810	1030			60	300	400	500	600	700	800	900
	65	300	400	500	600	760	970	1190		65	300	400	500	600	700	800	900
	70	300	400	500	600	710	910	1120		70	300	400	500	600	700	800	900
	75	300	400	500	600	700	860	1060		75	300	400	500	600	700	800	900
NOTES								_	Minim	um	300	400	500	600	700	800	900

Acmandia A

A

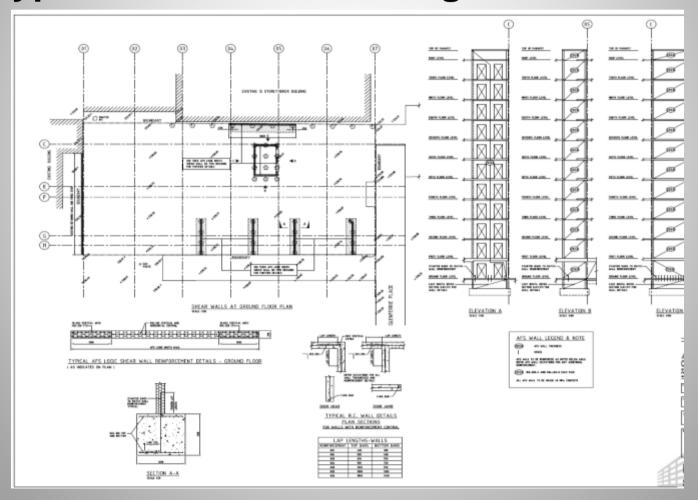
A.I

Development lengths have been calculated using the nominal areas as per AS/NZS 4761 and have been rounded, generally to the nearest 10 mm within the accuracy of normal design limits.

⁽²⁾ Smaller of 0.55_c and c.

Design to As according

	esiar Ba			. NOO !	V32 N36
f'c a (MPa) (m	nm) N			4 N20 1	N32 N36
40	20 25 30 35 40 45 50 55 60 65 70 75	300 4 300 4	680 9 610 8 0 550 7 0 500 6	600 70 600 70 600 70 600 70 600 70 600 70	1060 1300 990 1210 920 1130 0 860 1070 0 810 1010


and the state of t

SRIA Industry Survey of Engineering Drawings

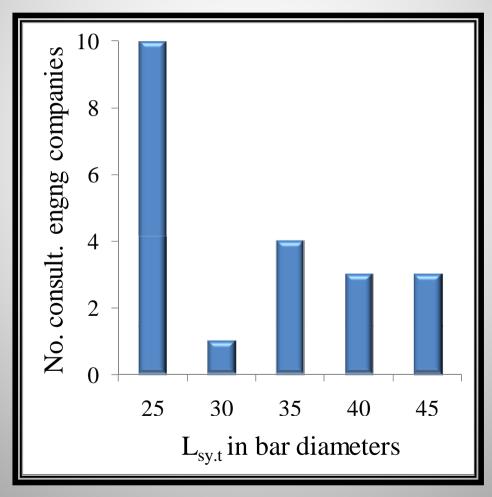
Typical Structural Drawing

SRIA Industry Survey of Engineering Drawings

Typical Structural Drawing

LAP L	ENGTHS-V	VALLS BOTTOM BARS
REINFORCEMENT	TOP BARS	$300 \rightarrow 25k_1d_b$
N12	500	400 550
N16 N20	650	750
N24	900	950
N28	1500	1200
N32 N36	1800	1450

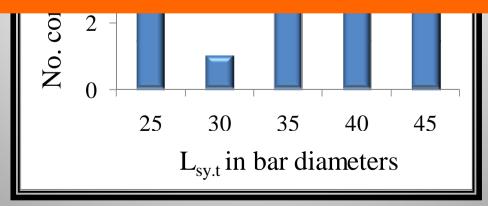
SRIA Industry Survey of Engineering Drawings


- Sample of tensile development or lap lengths, L_{sy.t} to AS 3600 – 2001, assuming:
 - clear distance, *a* ≥ 2×cover & at least 150 mm for slabs;
 - cover equals minimum required for durability;
 - cover not less than bar diameter, d_b, rounded up to nearest multiple of 5 mm; and
 - not more than 300 mm of concrete below bars.

Exposure classification	Element type	Bar diameter, d _b (mm)			
(EC) & strength grade f' _c	Liement type	12	16	28	
A1 & $f'_c = 25 \text{ MPa}$	Slab	$30.8d_{b}$	38.1 <i>d</i> _b	42.5 <i>d</i> _b	
$A \mid \alpha \mid_{c} = 25 \mid \text{WF a}$	Beam/Column	39.9 <i>d</i> _b	49.4 <i>d</i> _b	55.0 <i>d</i> _b	
A1 & $f'_c \ge 32 \text{ MPa}$	Slab	29.0 <i>d</i> _b	33.7 <i>d</i> _b	37.6 <i>d</i> _b	
$A \mid Q \mid_C \leq 32 \mid V \mid F a$	Beam/Column	35.2 <i>d</i> _b	43.6 <i>d</i> _b	48.6 <i>d</i> _b	
B1 & f' _c ≥ 32 MPa	Slab	29.0 <i>d</i> _b	29.0 <i>d</i> _b	30.6 <i>d</i> _b	
$D \cap Q \cap C = 32 \text{ IMF a}$	Beam/Column	29.0 <i>d</i> _b	29.0 <i>d</i> _b	39.6 <i>d</i> _b	

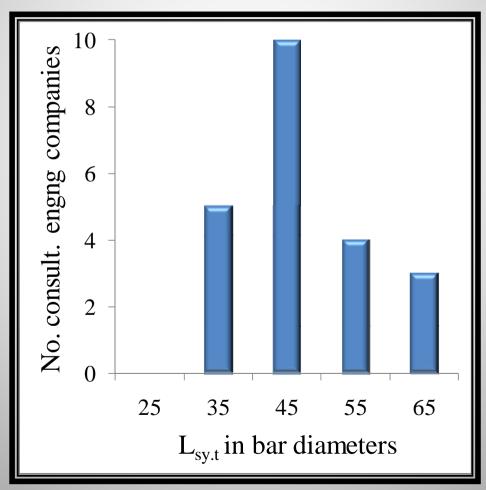
SRIA Industry Survey of Engineering Drawings

L_{sy.t} for D500N12 bars in slabs or beams



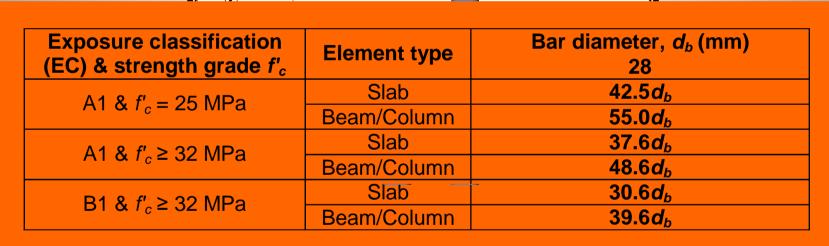
SRIA Industry Survey of Engineering Drawings

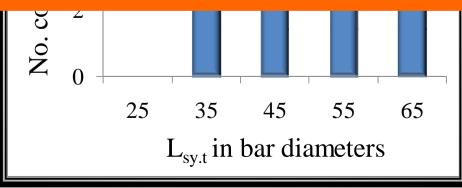
L_{sy.t} for D500N12 bars in slabs or beams


Exposure classification (EC) & strength grade f'_c	Element type	Bar diameter, d _b (mm) 12
A1 & $f'_c = 25 \text{ MPa}$	Slab	30.8 <i>d</i> _b
$A \mid \alpha \mid_{c} = 25 \text{ IVIF a}$	Beam/Column	39.9 <i>d_b</i>
A1 & $f'_{c} \ge 32 \text{ MPa}$	Slab	29.0 <i>d_b</i>
$A \mid \alpha \mid_{c} \geq 32 \mid \text{ViFa}$	Beam/Column	35.2 <i>d</i> _b
B1 & f' _c ≥ 32 MPa	Slab	29.0 <i>d</i> _b
	Beam/Column	29.0 <i>d</i> _b

SRIA Industry Survey of Engineering Drawings

L_{sy.t} for D500N28 bars in slabs or beams

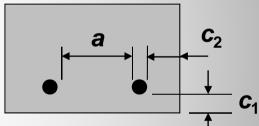




SRIA Industry Survey of Engineering Drawings

L_{sy.t} for D500N28 bars in slabs or beams

10 -



Design to AS 3600-2009: Tensile Development Lengths

Basic Tensile Development Length:

$$L_{\text{sy.tb}} = \frac{50k_{1} \left[\left(1.0 - 0.15(c_{d} - d_{b}) / d_{b} \right] f_{\text{sy}} d_{b}}{(132 - d_{b}) \sqrt{f_{c}'}} \ge 29k_{1} d_{b}$$

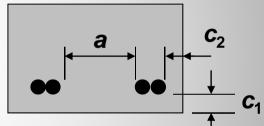
 $c_{d} = min. (c_{1}, c_{2}, a/2)$ and $d_{b} \le c_{d} \le 3d_{b}$

Refined Tensile Development Length:

$$L_{\text{sy.t}} = [1.0 - K(\sum A_{\text{tr}} - \sum A_{\text{tr.min}}) / A_{\text{s}}] [1.0 - 0.04 \rho_{\text{p}}] L_{\text{sy.tb}} \ge (0.7/k_3) L_{\text{sy.tb}}$$

Transverse reinforcement term, k₄

Transverse pressure term, k₅



Design to AS 3600-2009: Tensile Lap Lengths

Basic Tensile Lap Length:

$$L_{\text{sy.tb.lap}} = k_7 \frac{50k_1 \left[\left(1.0 - 0.15(c_{d} - d_{b}) / d_{b} \right] f_{\text{sy}} d_{b}}{(132 - d_{b}) \sqrt{f_{c}'}} \ge 29k_1 d_{b}$$

 $c_{d} = min. (c_{1}, c_{2}, a/2)$ and $d_{b} \le c_{d} \le 3d_{b}$

Refined Tensile Lap Length:

$$L_{\text{sy.t.lap}} = [1.0 - K(\sum A_{\text{tr}} - \sum A_{\text{tr.min}}) / A_{\text{s}}][1.0 - 0.04\rho_{\text{p}}]L_{\text{sy.tb.lap}} \ge \max.[(0.7/k_3)L_{\text{sy.tb.lap}}, 29k_1d_{\text{b}}]$$

Transverse reinforcement term, k₄

Transverse pressure term, k₅

Design to AS 3600-2009: Tensile Development/Lap Lengths

Maximum benefit to be gained from Refined Design:

$$k_3 = 1.0 - 0.15(c_d - d_b) / d_b$$

$$k_4 = 1.0 - K(\sum A_{tr} - \sum A_{tr.min}) / A_s$$

$$k_5 = 1.0 - 0.04 \rho_p$$

$$\begin{array}{c}
0.7 \le k_3, k_4, k_5 \le 1.0 \\
k_3 k_4 k_5 \ge 0.7
\end{array}
\Rightarrow k_4 k_5 \ge 0.7/k_3 \quad \text{OR} \quad (k_4 k_5)_{\text{min}} = 0.7/k_3$$

Design to AS 3600-2009: Tensile Development/Lap Lengths

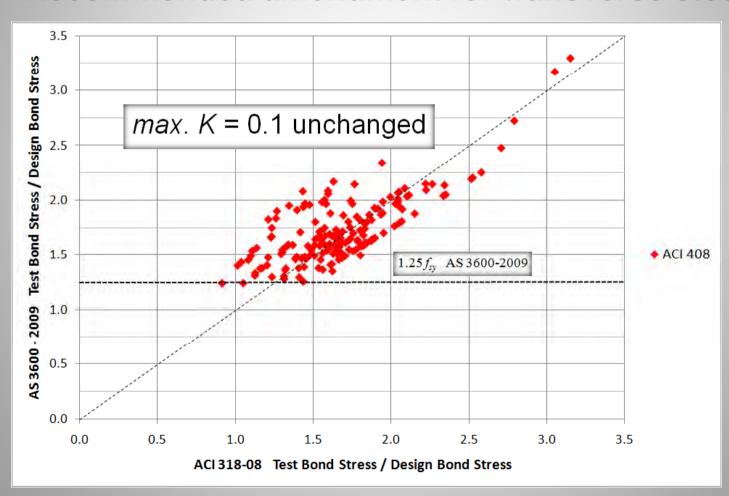
Maximum benefit to be gained from Refined Design:

	N10	N12	N16	N20	N24	N28	N32	N36	N40
c _d			Values	of (k ₄ k ₅) _{mi}	$_{\rm in} = 0.7/k_3$	3			
20	0.82	0.78	0.73	0.70	0.70	0.70	0.70	0.70	0.70
25	0.90	0.84	0.76	0.73	0.70	0.70	0.70	0.70	0.70
30	1.00	0.90	0.81	0.76	0.73	0.71	0.70	0.70	0.70
35	1.00	0.98	0.85	0.79	0.75	0.73	0.71	0.70	0.70
40	1.00	1.00	0.90	0.82	0.78	0.75	0.73	0.71	0.70
45	1.00	1.00	0.96	0.86	0.81	0.77	0.75	0.73	0.71
50	1.00	1.00	1.00	0.90	0.84	0.79	0.76	0.74	0.73
55	1.00	1.00	1.00	0.95	0.87	0.82	0.78	0.76	0.74
60	1.00	1.00	1.00	1.00	0.90	0.84	0.81	0.78	0.76
65	1.00	1.00	1.00	1.00	0.94	0.87	0.83	0.80	0.77
70	1.00	1.00	1.00	1.00	0.98	0.90	0.85	0.82	0.79
<i>7</i> 5	1.00	1.00	1.00	1.00	1.00	0.94	0.88	0.84	0.81
80	1.00	1.00	1.00	1.00	1.00	0.97	0.90	0.86	0.82
85	1.00	1.00	1.00	1.00	1.00	1.00	0.93	0.88	0.84
90	1.00	1.00	1.00	1.00	1.00	1.00	0.96	0.90	0.86
95	1.00	1.00	1.00	1.00	1.00	1.00	0.99	0.93	0.88
100	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.90

Design to AS 3600–2009: Tensile Development/Lap Lengths

Recommended amendment for transverse steel:

VALUES OF K FOR	TABLE 13.1.2.3 R TYPICAL ARRANGEMENTS OF TRANSVERSE REINFOR	CEMENT FOR DIFF	ERENT MEMBER	TYPES
Member type	Examples of potential splitting cracks at a tensile face	$n_{ m f}$	n_{bs}	K (see Note 2)
Circular column	$A_{\rm tr} = A_{\rm b.fit}$	1	1	0.10
Rectangular column	$n_{\rm f} = 2, n_{\rm bs} = 2$ $\Rightarrow K = 0.10$ $A_{\rm tr} = A_{\rm b.fit}$ $n_{\rm f} = 2, n_{\rm bs} = 3$ $\Rightarrow K = 0.083$	≥1	≥1	0.05≤&≤0.10
Beam	$n_{\rm f} = 2, n_{\rm bs} = 4$ $\Rightarrow K = 0.075$	≥1	≥1	0.05≤K≤0.10
Slab or wall (with fitments)	$A_{\rm tr} = A_{\rm b.fit}$	≥1	≥1	0.05≤K⊴0.10
Slab or wall (without fitments)	— ○ ○ ○ ○ ○ ○ ○ ○ ○ /A _{tr}	0	1 per main bar spacing	0.05 (see Note 3)
NOTES:	K	= 0.05(1	$+ n_{\rm f} / n_{\rm b}$	≤ 0.1


NOTES:

- 1 Fitments are a type of transverse reinforcement.
- 2 The same value of K applies to all of the longitudinal bars being either anchored or lap spliced, i.e. it is a weighted average value.
- To be effective, the transverse reinforcement must be located between the longitudinal bars and the concrete tensile face as shown, otherwise K=0.

Design to AS 3600–2009: Tensile Development/Lap Lengths

Recommended amendment for transverse steel:

Design Tables to AS 3600–2009

- General Tables
 - c_d is calculated directly by the designer
 - similar to existing tables
- New Cover-Controlled Tables
 - c_d is controlled by concrete cover
- New Spacing-Controlled Tables
 - c_d is controlled by clear distance between bars
- Commentary and Worked Examples

Design Tables to AS 3600-2009

Design Variables for Cover-Controlled Tables

Design Variable	Description	Range
EC	Exposure classification for durability	EC = A1, A2 or B1, with concrete assumed to be cast in standard formwork
<i>K</i> ₁	Constant that accounts for depth of concrete below bars	 k₁ = 1.3 for horizontal anchored or lapped bars with more than 300 mm concrete below; or = 1.0 otherwise
k ₇	Constant that accounts for effects of staggered laps and bar stress levels	 k₇ = 1.0 if the cross-sectional area of the bars outside the laps equals at least twice the area required for strength, and no more than half the bars are lapped at any section; or = 1.25 otherwise.

Design Tables to AS 3600-2009

Required concrete cover, c_{req}

TABLE 4.10.3.2

REQUIRED COVER WHERE STANDARD FORMWORK
AND COMPACTION ARE USED

	Required cover, mm Characteristic strength (f'_{c})							
Exposure classification								
	20 MPa	25 MPa	32 MPa	40 MPa	≥ 50 MPa			
Al	20	20	20	20	20			
A2	(50)	30	25	20	20			
BI	_	(60)	40	30	25			
B2	_	_	(65)	45	35			
C1	_	_	-	(70)	50			
C2		_	_		65			

NOTE: Bracketed figures are the appropriate covers when the concession given in Clause 4.3.2, relating to the strength grade permitted for a particular exposure classification, is applied.

Design Tables to AS 3600-2009

Extracts from Cover-Controlled Tables

Exposure classification (EC), strength	Development or lap	Bar diameter, $d_{\rm b}$ (mm)					
f'_c and c_{req}	length	12	16	28			
A1	L _{sy.tb}	41.9 <i>d</i> _b	46.4 <i>d</i> _b	53.2d _b			
f' _c = 20 MPa & c _{req} = 20 mm	L _{sy.tb.lap}	52.4d _b	58.0 <i>d</i> _b	66.5 <i>d</i> _b			
	(<i>k</i> ₄ <i>k</i> ₅) _{min}	0.78	0.73	0.71			
A1	$\mathcal{L}_{sy.tb}$	37.5d _b	41.5 <i>d</i> _b	47.6d _b			
f'_c = 25 MPa & c_{req} = 20 mm	L _{sy.tb.lap}	46.9 <i>d</i> _b	51.9 <i>d</i> _b	59.5d _b			
	(<i>k</i> ₄ <i>k</i> ₅) _{min}	0.78	0.73	0.71			
B1	$\mathcal{L}_{sy.tb}$	29.0d _b (29.2d _b)	29.5d _b (30.2d _b)	39.8d _b (39.8d _b)			
f'_{c} = 32 MPa & c_{req} = 40 mm	L _{sy.tb.lap}	32.2d _b (36.5d _b)	36.9d _b (37.7d _b)	49.7d _b (49.8d _b)			
$(f'_c = 25 \text{ MPa & } c_{req} = 60 \text{ mm})$	(<i>k</i> ₄ <i>k</i> ₅) _{min}	1.0 (1.0)	0.90 (1.0)	0.75 (0.85)			

Design Tables to AS 3600–2009

Example Design Table for Structural Dwgs

		N12 main bars	N16 main bars	N28 main bars
Slabs:	$L_{sy.t}(mm)$	450	660	-
	$L_{sy.t.lap}(mm)$	560	830	-
Beams and	L _{sy.t} (mm)	-	480	950
columns:	$L_{sy.t.lap}(mm)$	-	600	1190

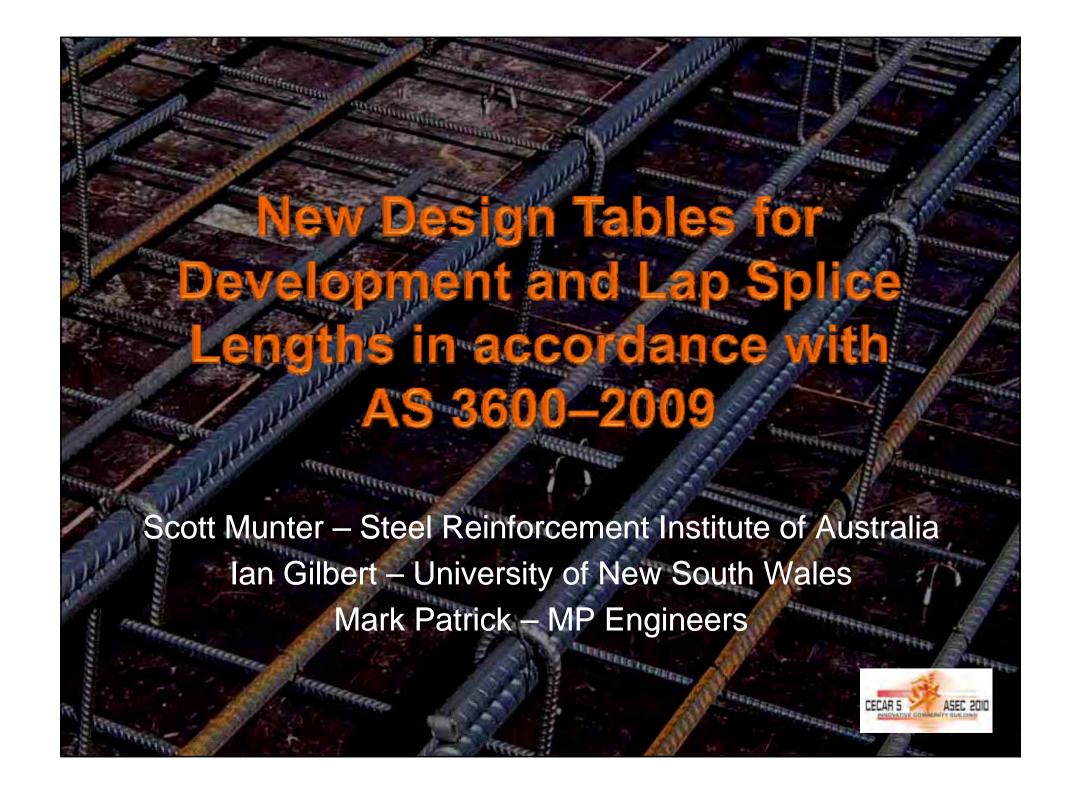
Notes: (a) Expos. Class. A1 (interior), $f'_c = 25$ MPa;

- (b) min. concrete cover, c_{min} = 20 mm for N12 & N16 bars; = 30 mm for N28;
- (c) min. centre-to-centre bar spacing = $2c_{min} + 2d_b$ assuming no staggering; and
- (d) multiply the above by 1.3 for horizontal bars with 300+ mm of concrete below.

Design Tables to AS 3600-2009

Exposure classification (EC), strength	Development or lap		Bar diameter, d _b (mr	n)	ıral Dwgs
r _c and c _{eq}	langth	12	16	28	
A1	Leen	37.5d _b	41.5d _s	47.6d ₅	
f'c = 25 MPa & c _{rec} = 20 mm	L _{sym tap}	46.9d ₃	51.9d _b	59.5d _a	N28 main bars
	(K4K5)min	0.78	0.73	0.71	1420 main bars
B1	L _{ry tb}	29.0d ₅ (29.2d ₅)	29.5d _b (30.2d _b)	39.8d ₅ (39.8d ₃)	_
$f'_c = 32 \text{ MPa & } c_{mq} = 40 \text{ mm}$	L _{ry to lap}	32.2d ₅ (36.5d ₅)	36.9d _b (37.7d _b)	49.7d _b (49.8d _b)	
$(f_c = 25 \text{ MPa & } c_{sq} = 60 \text{ mm})$	(K4K5)min	1.0 (1.0)	0.90 (1.0)	0.75 (0.85)	-
Beams and L_{s_1}	_{/.t} (mm)	-		480	950
columns: L _{sy.}	_{t.lap} (mm)	-		600	1190

Notes: (a) Expos. Class. A1 (interior), f'_c = 25 MPa;


- (b) min. concrete cover, c_{min} = 20 mm for N12 & N16 bars; = 30 mm for N28;
- (c) min. centre-to-centre bar spacing = $2c_{min} + 2d_b$ assuming no staggering; and
- (d) multiply the above by 1.3 for horizontal bars with 300+ mm of concrete below.

Conclusions

- Design to AS 3600–2001
- SRIA Industry Survey of Engineering Drawings
- Design to AS 3600–2009:
 Tensile Development Lengths
- Design to AS 3600–2009:
 Tensile Lap Lengths
- SRIA Design Tables to AS 3600–2009

