Review of Australian Support-

Scott-Munter - Steel Reinforcement Institute of Australia Mark Patrick - MP Engineers
Vijay Rangan - Curtin University of Technology

Overview

- Class L Mesh Main Reinforcement
- Design to AS 3600-2009
- SRIA Technical Note TN6
- Moment Redistribution
- Australian Support-Settlement Tests (1-Way)
- University of Melbourne
- University of New South Wales
- Curtin University of Technology (SRIA)
- Review of Support-Settlement Test Results

New Design Rules in AS 3600-2009
 - D500L Bars to AS/NZS 4671

Strain

New Design Rules in AS 3600-2009
 - D500L Bars to AS/NZS 4671

Class L Mesh Main Reinforcement

- Design to AS 3600-2009

Capacity reduction factor, ϕ for calculating $\phi M_{\text {uo }}$:

- Bending without axial tension or compression, for members with Class L reinforcement:

$$
0.6 \leq\left\{\phi=\left(1.19-13 k_{\text {uo }} / 12\right)\right\} \leq 0.64(\text { i.e. }=0.8 \times 0.8)
$$

Common methods of analysis for calculating M^{*}, etc.:

- Clause 6.10 - Simplified Methods for beams or one-way slabs; and two-way slabs supported on four sides.
- Clause 6.2 - Linear Elastic Analysis of any type of framed concrete structure, but ignoring moment redistribution
- Support settlement no longer required to be considered

Class L Mesh Main Reinforcement
 - SRIA Technical Note TN6 (to AS 3600-2001)

Advises that support settlement does not normally need to be considered in design, as it is adequately catered for using the lower value of $\phi=0.64$ for under-reinforced sections

Review of Australian Support-Settlement Tests

Moment Redistribution

- For design of a cross-section, the amount of moment redistribution:
where:

$$
\begin{aligned}
& M^{*}= \text { the design bending } \\
& \text { moment, and } \\
& M_{e}^{*}= \text { the elastically-determined } \\
& \text { design bending moment } \\
& \text { ignoring moment } \\
& \text { redistribution }
\end{aligned}
$$

Australian Support Settlement Tests

- University of Melbourne (2005)

Two two-span continuous one-way reinforced concrete slabs containing Class L mesh were tested to investigate the impact of support settlement on ultimate strength.
"Moment redistribution occurred throughout the tests due to changes in relative stiffness caused by the gradually evolving crack patterns."
"The slabs were able to resist loads
ε_{u} varied from 1.7 to 3.4\%

Upward

 movement of L/294, or downward movement of L/235considerably higher than the ultimate limit state design loads before failure (using $\phi=0.8$)."

Australian Support Settlement Tests

- University of New South Wales (2008)
- "A series of full range load tests is described on two-span continuous oneway reinforced concrete slabs containing Class L welded wire fabric (WWF). Five specimens were tested to investigate the impact of support settlement on ultimate strength."
- There were 2 control slabs without any settlement. The centre support of the other 3 was lowered by L/215, L/422 or L/426.
- "The imposed support settlements did not affect the strength of the slabs and the reinforcement was able to accommodate the settlements without compromising the strength."
- "The WWF used in the experiments had a uniform elongation $\varepsilon_{s u}$ typically in excess of 3.4% and a strength-to-yield stress ratio $\left(f_{\text {su }} / f_{\text {sy }}\right)$ in excess of 1.05.Therefore, the observations concerning the effect of support settlement on the strength of the one-way slabs may not be applicable for Class L reinforcement that just satisfies the minimum limits."

Australian Support Settlement Tests

- SRIA at Curtin University of Technology:

Australian Support Settlement Tests

- SRIA at Curtin University of Technology:

Four double-span support settlement tests:

Australian Support Settlement Tests

- SRIA at Curtin University of Technology: Main reinforcement:

Australian Support Settlement Tests

- SRIA at Curtin University of Technology:

Different end support conditions: FIXED

Australian Support Settlement Tests

- SRIA at Curtin University of Technology: Different end support conditions: ROLLER

Australian Support Settlement Tests

- SRIA at Curtin University of Technology: Testing DSOW-ST4 : holding down ends

Australian Support Settlement Tests

- SRIA at Curtin University of Technology: Testing DSOW-ST4 : flexural cracking over middle support after initially jacked up 5 mm

Upward movement of L/460

Australian Support Settlement Tests

- SRIA at Curtin University of Technology: Testing DSOW-ST4 : near maximum load

Australian Support Settlement Tests

- SRIA at Curtin University of Technology: Testing DSOW-ST4 : +ve bending region

Australian Support Settlement Tests

- SRIA at Curtin University of Technology:

Testing DSOW-ST4 : failing -ve bending region

Australian Support Settlement Tests
 - SRIA at Curtin University of Technology:

Australian Support Settlement Tests

- SRIA at Curtin University of Technology:

Testing DSOW-ST4 : failed +ve bending region

Australian Support Settlement Tests
 - SRIA at Curtin University of Technology:

Australian Support Settlement Tests

- Review of Support-Settlement Test Results

Australian Support Settlement Tests

- Review of Support-Settlement Test Results

Australian Support Settlement Tests

- Review of Support-Settlement Test Results

Australian Support Settlement Tests

- Review of Support-Settlement Test Results
- Potentially detrimental effects of support settlement up to about span/250 are significantly less than first envisaged based on simple elastic design analysis
- A very detailed Curtin University Test Report about all the DSOW, SSOW and TW slab tests will be published early next year, as soon as it has been reviewed by the SRIA Peer Review Panel of technical experts and industry representatives
- It will have an associated document to explain the design of the slabs in accordance with AS 3600-2009
- SRIA's research results will make a significant contribution to the national test database concerning the use of Class L mesh in suspended slabs

Conclusions

- Class L Mesh Main Reinforcement
- Design to AS 3600-2009
- SRIA Technical Note TN6
- Moment Redistribution
- Australian Support-Settlement Tests (1-Way)
- University of Melbourne
- University of New South Wales
- Curtin University of Technology (SRIA)
- Review of Support-Settlement Test Results

Review of Australian Support-

Scott-Munter - Steel Reinforcement Institute of Australia Mark Patrick - MP Engineers
Vijay Rangan - Curtin University of Technology

